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a b s t r a c t

A second order front tracking method is developed for solving the hyperbolic system of
Euler equations of inviscid fluid dynamics numerically. Meshless front tracking methods
are usually limited to first order accuracy, since they are based on a piecewise constant
approximation of the solution. Here second order convergence is achieved by deriving a
piecewise linear reconstruction of the piecewise constant front tracking solution. The lin-
earization is performed by decomposing the front tracking solution into its wave compo-
nents and by linearizing the wave solutions separately. In order to construct a physically
correct linearization, the physical phenomena of the front are taken into account in terms
of the front types of the previously developed improved front interaction model. This front
interaction model is also extended to include front numbers used in the wave decomposi-
tion. It is illustrated numerically for Sod’s Riemann problem, the two interacting blast
waves problem, and a two-dimensional supersonic airfoil flow validation study that the
proposed front tracking method achieves second order convergence also in the presence
of strong discontinuities and their interactions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Front tracking is known to be an effective tool for resolving discontinuities in the solution of hyperbolic conservation
laws. One type of front tracking methods initiated by Richtmyer and Morton [23] uses a fixed background mesh to solve
for continuous phenomena and introduces additional degrees of freedom to model discontinuities such as shock waves
and two fluid interfaces. This branch of front tracking has since then been extended to resolve complex instabilities and
bifurcations by Moretti [16], Swartz and Wendroff [28], and Chern, Glimm, and coworkers [4,9–11]. This includes wave
labeling techniques and the combination with second order finite volume discretizations on the background mesh [3]. A the-
oretical study on this type of front tracking is presented in [6] and in [5,12] conservative front tracking methods are
considered.

A second type of meshless front tracking methods exists that resolves both the discontinuities and the continuous regions
of the solution domain [15]. Meshless front tracking introduced by Risebro and Tveito [25] does not require a background
mesh by approximating continuous phenomena using a series of small discontinuities. This class of front tracking methods
has been used as an analytical tool for studying scalar equations and systems of hyperbolic conservation laws [1,2]. It has
also been employed as a numerical scheme to solve one-dimensional problems in shallow water flows [13], gas dynamics
[18], and polymer flooding [24]. One-dimensional front tracking is of interest in, for example, pipe flows and shock tube
problems. An equivalent algorithm can also be used to simulate two-dimensional supersonic flows [31]. Meshless front
tracking has been extended to higher dimensions using dimensional splitting techniques by Holden, Lie, et al. [14,19].
. All rights reserved.
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Fig. 1. Front tracking discretization in space–time.
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Here the branch of meshless front tracking methods is considered as a numerical approach for solving the hyperbolic Eu-
ler equations of inviscid fluid dynamics. The numerical algorithm is based on a piecewise constant approximation of the
solution of local Riemann problems. The first step in the solution procedure for an initial value problem is the piecewise con-
stant approximation of the initial conditions. At the discontinuities in this discretization the flow conditions resemble the
initial conditions of a local Riemann problem. The piecewise constant approximation of the solution of these Riemann prob-
lems results in the introduction of new discontinuities which move in time. The paths of these discontinuities are tracked by
fronts in the space–time domain, see Fig. 1. In nonlinear problems the front velocities are in general different for different
fronts, such that they can intersect at a later time. At an intersection point the discontinuous solution is locally again equal to
the initial conditions of a Riemann problem. The piecewise constant approximation of the solution of this Riemann problem
results in the introduction of more fronts which can again intersect with other fronts and so on, until a certain time t ¼ ~t is
reached.

Recently an improved front interaction model was proposed to obtain a physically more accurate simulation of the front
interactions for the Euler equations [31]. In the improved model the physical phenomena of the fronts are explicitly taken
into account to predict the wave pattern that is created at an intersection point based on gas dynamics theory. To that end,
front types are assigned to the fronts to track the wave phenomena that the fronts represent. This information is then used in
a modified Riemann solver, instead of solving a standard Riemann problem in the intersection points.

The piecewise constant front tracking solution is effective for resolving shock waves and contact discontinuities as true
discontinuities. In that sense the method contains no artificial numerical viscosity and it can be considered an uncondition-
ally stable scheme [14]. However, due to the piecewise constant approximation of the solution, front tracking methods usu-
ally result in first order error convergence [15]. It has been illustrated numerically that integral quantities are approximated
with second order accuracy for the conservation of mass, momentum, and energy [31], and the location of the fronts [30].
Second order convergence for a scalar conservation law in one dimension was proven by Lucier [21] for a piecewise linear
approximation through nodes moving according to the method of characteristics.

In this paper, a second order front tracking method for the system of Euler equations is proposed by using the front types
of the improved front interaction model. The second order accurate solution is obtained by a piecewise linear reconstruction
of the piecewise constant front tracking solution. In contrast to scalar equations, systems of conservation laws allow for mul-
tiple waves to coexist in any location in the space–time domain. The piecewise linear approximation is, therefore, con-
structed by decomposing the front tracking solution into a series of wave solutions and by linearizing the wave
components separately. The piecewise linear front tracking solution is finally obtained by summing the linearized wave solu-
tions. This approach is based on the observation that, although the nonlinear problem itself cannot be solved by summing



Fig. 2. Front tracking notation in space–time.
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wave solutions, the nonlinear front tracking solution can nonetheless be decomposed into a summation of wave components.
In order to obtain a physically consistent linearization the front types of the improved front interaction model are employed.

In contrast to the earlier first order improved front tracking method [31] the current work presents a front tracking meth-
od which reaches a second order convergence rate. To enable the second order piecewise linear reconstruction, front
numbers and a front number interaction model are introduced into the formulation. The application of the method to two-
dimensional supersonic airfoil flow is also extended to non-zero angles of attack using a domain decomposition approach.

The piecewise linear front tracking method is introduced in Section 3 after a brief review of the standard and improved
meshless front tracking methods in Section 2. In Sections 4 and 5 the properties of the developed method are analyzed in
application to Sod’s Riemann problem and the two interacting blast waves problem, respectively. The results are compared
with the first order front tracking method and a second order Godunov finite volume scheme. Results for a two-dimensional
supersonic airfoil flow problem are validated with respect to experimental PIV velocity measurements in Section 6. The pa-
per is concluded in Section 7.

2. Front tracking for the Euler equations

Meshless front tracking for the Euler equations is described in Section 2.1. In Section 2.2 the formulation of the improved
front interaction model is revisited in more detail, since its front types are used in the linearization algorithm.

2.1. Meshless front tracking

The Euler equations for one-dimensional unsteady inviscid flow without heat conduction are given in conservation form
by
@U
@t
þ @FðUÞ

@x
¼ 0; ð1Þ
where
U ¼
q
qu

qE

0B@
1CA; F ¼

qu

qu2 þ p

quH

0B@
1CA; Uðx; 0Þ ¼ U0ðxÞ; ð2Þ
with state vector Uðx; tÞ, flux vector Fðx; tÞ, and initial condition U0ðxÞ in terms of density qðx; tÞ, velocity uðx; tÞ, static pres-
sure pðx; tÞ, total energy Eðx; tÞ, and enthalpy Hðx; tÞ as function of spatial coordinate x 2 R and time t 2 Rþ, see for example
[7]. A perfect gas is considered for which holds E ¼ ð1=ðc� 1ÞÞp=qþ u2=2 and H ¼ Eþ p=q, with ratio of specific heats
c ¼ cp=cv.

A front tracking method approximates the solution of (1) in the space–time plane by a piecewise constant function based
on uniform flow conditions Ui in ncell cells Ai with i ¼ 1; . . . ;ncell, see Fig. 2. The cell boundaries are composed of nfront linear
front paths fj with j ¼ 1; . . . ;nfront, where the fronts follow physical wave phenomena, such as shock waves, contact waves,
and characteristics. The starting and end points of the front paths fj form a set of nnode nodes nk ¼ ðxnk

; tnk
Þ in space–time with

k ¼ 1; . . . ;nnode. Pointers are used to establish the relation between cells Ai and fronts fj, and fronts fj and nodes nk.
In the first step of the front tracking algorithm the piecewise constant approximation of the initial conditions U0ðxÞ results

in the introduction of nnode0 nodes nk with tnk
¼ 0 for k ¼ 1; . . . ;nnode0 at the discontinuities in the discretized initial condi-

tions. At the nodes nk the flow conditions resemble locally the initial conditions of a Riemann problem given by
U0ðxÞ ¼
U�; xnk

< 0;
Uþ; xnk

P 0;

�
ð3Þ
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for k ¼ 1; . . . ;nnode0 , with U� and Uþ the constant left and right states of node nk, respectively. The piecewise constant approx-
imation of the solution of the nnode0 Riemann problems leads to the creation of nfront0 fronts fj with constant front velocities
ufrontj

emanating from the nodes with j ¼ 1; . . . ;nfront0 . At the first intersection of fronts at t ¼ t1 a new node nk with
k ¼ nnode0 þ 1 and tnk

¼ t1z is created and a Riemann problem is solved, and so forth until t ¼ ~t.
The accuracy of the simulation is mainly governed by the number of nodes used in the discretization of continuous initial

and boundary conditions, and the number of fronts nf that is used to discretize centered rarefaction fans. The number of
fronts nf can be determined adaptively based on the strength of the rarefaction fan by a user defined discretization param-
eter d
nf ¼max 2;
Dcrw

d

� �� �
; ð4Þ
with Dcrw the strength of the centered rarefaction wave (crw) defined as
Dcrw ¼
1
3

jul � urj
1
2 ðjulj þ jurjÞ

þ jpl � prj
1
2 ðjplj þ jprjÞ

þ jql � qrj
1
2 ðjqlj þ jqrjÞ

 !
; ð5Þ
where subscripts l and r denote the left and right state of the wave, respectively. The stop criterion for the iterative solu-
tion of the Riemann problems also affects the simulation accuracy. The Riemann solver used here is based on an iter-
ation of analytical isentropic Riemann solutions comparable to the one described in [8]. The resulting piecewise constant
front tracking solution converges with first order accuracy [15]. Usually only interactions of two fronts are considered
without loss of generality [1]. The build up of the number of fronts nfront is controlled by disregarding weak fronts.
To that end the strength of each front Dfrontj

is described in analogy to (5) for centered rarefaction fans, where the sub-
scripts l and r refer in this case to the left and right state of the front. A cut-off criterion dfront is prescribed to eliminate
weak fronts for which holds
Dfrontj
< dfront; ð6Þ
from the discretized solution of the Riemann problem. The left and right state of the neglected front are then averaged.

2.2. Improved front interaction model

In the improved front tracking method for the Euler equations [31] a better physical modeling of the front interactions is
obtained by explicitly taking into account the wave phenomena that the fronts represent. The following front types ftypej

are
used to track the wave phenomena of the fronts
ftypej
2 fsw; lch; ich; rch; cd; lcw; icw; rcwg; ð7Þ
for j ¼ 1; . . . ; nfront. The front types distinguish between shock waves (sw), left/internal/right characteristics of a fan of char-
acteristics (lch/ich/rch), contact discontinuities (cd), and left/internal/right contact waves discretizing a region of continuous
change of entropy (lcw/icw/rcw). Also front families
ffamilyj
2 f�;0;þg; ð8Þ
for j ¼ 1; . . . ;nfront, are assigned to the fronts to denote left running (�), right running (+), and convective (0) fronts. The front
type ftypej

and family ffamilyj
govern both the interaction with other fronts in the improved front interaction model and the

relation for the front velocity ufrontj
in terms of its left and right state. The interaction model prescribes the wave pattern orig-

inating from an intersection point in terms of the wave types
wtypel
2 fsw; lch; ich; rch; cd; lcw; icw; rcw; crwg; ð9Þ
with l ¼ fleft;middle; rightg, of the created left, middle, and right waves wl as function of ftypej
and ffamilyj

of the two intersect-
ing fronts, jleft and jright, see Fig. 3(a). Wave types wtypel

differ from front types ftypej
in the sense that the former include cen-

tered rarefaction waves (crw). A centered rarefaction wave is discretized by a series of fronts representing characteristics
(lch/ich/rch). The model consists of three functions gl for which holds
wtypel
¼ glðftypejleft

; ftypejright
; ffamilyjleft

; ffamilyjright
Þ; ð10Þ
for l ¼ fleft;middle; rightg. The functions gl are derived from theoretical gas dynamics [20] and are given in tabulated form in
[31]. The front types ftypej

of the fronts created at the intersection point are then derived from the wave types wtypel
as follows
ftypej

¼ wtypel
; wtypel

– crw;
2 flch; ich; rchg; wtypel

¼ crw;

�
ð11Þ
if front fj is part of wave wl. The front families ffamilyj
are determined by whether the front is created as part of the left, middle,

or right wave of the solution of the Riemann problem



Fig. 3. Front interaction models.
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ffamilyj
¼

�; l ¼ left;
0; l ¼middle;
þ; l ¼ right;

8><>: ð12Þ
with front fj part of wave wl. A non-standard Riemann solver, which takes into account whether the predicted wave types
wtypel

are isentropic or possibly non-isentropic, is used to compute the post states Ui in the new cells and the velocities of
the created fronts ufrontj

. The front types ftypej
are also used in controlling the increase of the number of fronts with time

by neglecting reflections of fronts that discretize continuous phenomena at front interactions with other continuous phe-
nomena fronts (lch/ich/rch/lcw/icw/rcw).

The interaction of, for example, two centered rarefaction waves is in this framework resolved as follows. The rarefaction
waves are first discretized by a series of small discontinuities using characteristic fronts (lch/ich/rch). The discrete interac-
tion of the waves then results in a discontinuous change of the flow conditions at an intersection point of two of these fronts.
Although the continuous problem does not involve a Riemann problem, the front interaction is resolved by solving an isen-
tropic Riemann problem to take the isentropic nature of the reflected fronts into account. The Riemann problem is solved
using one iteration of the Riemann solver, since the iterative Riemann solver is based on the analytical solution of the isen-
tropic Riemann problem. This process is repeated for all intersections of the characteristic fronts.
3. Second order piecewise linear reconstruction

In addition to tracking the front types and front families, also wave numbers of the fronts need to be tracked for the piece-
wise linear reconstruction of the front tracking solution. The assignment of front numbers is considered in Section 3.1 in
combination with the front interaction model for the front numbers. Tracking the wave numbers is necessary for the wave
decomposition of the front tracking solution, described in Section 3.2, in order to linearize the wave solutions separately as
discussed in Section 3.3. The last step of the algorithm summarized in Section 3.4 is the summation of the linearized wave
solutions to obtain the piecewise linear front tracking solution.
3.1. Wave tracking

In order to perform the wave decomposition the nwave waves in the front tracking solution in space–time are numbered
using wave numbers vnumberm with m ¼ 1; . . . ;nwave. To distinguish between these waves in space–time vm and the waves wl



Fig. 4. Front number interaction examples.
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created at a front interaction a different notation is used for both cases. In this context a wave can be a shock wave, a fan of
characteristics, a contact discontinuity, or a region of continuous change of entropy. To track which fronts belong to which
wave, the wave numbers vnumberm are assigned to the fronts in the form of front numbers fnumberj

for which holds
fnumberj
¼ vnumberm ; ð13Þ
if front fj is part of wave vm. In order to assign front numbers fnumberj
to new fronts after a front intersection the interaction

model has to be extended to prescribe also the wave numbers wnumberl
of the created waves with l ¼ fleft;middle; rightg. The

wave numbers wnumberl
are given by an additional front interaction function hl which depends on the front types ftypej

, fam-
ilies ffamilyj

, and numbers fnumberj
of the two intersecting fronts, jleft and jright,
wnumberl
¼ hlðftypejleft

; ftypejright
; ffamilyjleft

; ffamilyjright
; fnumberjleft

; fnumberjright
Þ; ð14Þ
with l ¼ fleft;middle; rightg, see Fig. 3(b). The function hl can return the front number of one of the intersecting fronts or a
new wave number
hl 2 ffnumberjleft
; fnumberjright

;new wave numberg; ð15Þ
for l ¼ fleft;middle; rightg. The front number interaction function hl is derived from gas dynamics theory in analogy to the
improved front interaction model gl and presented in tabulated form in Appendix A.

An example of the intersection of a right and left running shock wave, sw+ and sw�, is given in Fig. 4(a). It results in the
continuation of the two shock waves and the creation of a contact discontinuity cd0. The front numbers fnumberj

of the created
left and right shock waves are equal to those of the intersecting right and left shock wave, jright and jleft, respectively. The
contact discontinuity has a new wave number.

If hl prescribes that the created wave number is different from the wave numbers of the intersecting fronts, the number of
waves is increased by one, nwave :¼ nwave þ 1, and the created wave is assigned the new wave number, wnumberl

¼ nwave. The
number of the wave is then also assigned to the new fronts fj which are part of the wave wl according to
fnumberj
¼ wnumberl

: ð16Þ
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In order to assign the new wave number to the entire wave and not only to its first created front, the relation between the
created wave numbers wnumberl

and the intersecting front numbers, fnumberjleft
and fnumberjright

, is stored in another tabulated
function dl with l ¼ fleft;middle; rightg. At a later intersection of front numbers which are already tabulated in dl, the created
wave numbers are assigned according to table dl
wnumberl
¼ dlðfnumberjleft

; fnumberjright
Þ; ð17Þ
for l ¼ fleft;middle; rightg. If the intersecting front numbers fnumberjleft
and f numberjright

are not yet tabulated in dl, then function

hl (14) is used to create the entry for the combination of fnumberjleft
and f numberjright

in dl. In this way, for example, all contact

waves cw0 created at the interaction of a right running centered rarefaction fan crw+ and a left running shock wave sw�
are assigned the same new front number, see Fig. 4(b). Storing also the information of the front types ftypej

and families
ffamilyj

of the intersecting fronts, jleft and jright, in table dl is not necessary.

3.2. Wave decomposition

The front numbers fnumberj
are used to decompose the front tracking solution at t ¼ ~t into wave solutions. The piecewise

constant solution eUðxÞ in the ~ncell cells eAi at t ¼ ~t is denoted from left to right by eU~i for ~i ¼ 1; . . . ; ~ncell. The tilde is used to
differentiate between quantities at t ¼ ~t and those in space–time. The approximation is discontinuous at front locations
~xfront~j

¼ ~xnode~k
for ~j ¼ 1; . . . ; ~nfront, with ~j ¼ ~k and ~nfront ¼ ~nnode. The ~nwave wave solutions present in the front tracking solution

at t ¼ ~t are given by eV ~mðxÞ for ~m ¼ 1; . . . ; ~nwave such that holds
eUðxÞ ¼ eU ref þ
X~nwave

~m¼1

eV ~mðxÞ; ð18Þ
where the reference value eU ref ¼ eUðxrefÞ is chosen to be the value of eUðxÞ in the leftmost point xref of the spatial domain, see
Fig. 5(a). The wave solutions eV ~mðxÞ contain the ~nfront ~m

fronts ~f ~m~j
for which holds ~f number~j

¼ ~vnumber ~m
and the left and right

boundary fronts. The piecewise constant wave solution eV ~mðxÞ is then given by
eV ~mðxÞ ¼ eV ~m~i
; ð19Þ
for x 2 eA ~m~i
¼ ½~x front ~m~j

; ~x front ~m~jþ1
� with ~i ¼ ~j and
eV ~m~i
¼
X~i

~j¼2

eUþ~m~j
� eU�~m~j

; ð20Þ
with eU�~m~j
and eUþ~m~j

the left and right states of front ~f ~m~j
, respectively, see Fig. 5(b) and (c). For the wave solutions eV ~mðxÞ holds

that the solution in the first cell is eV ~m1 ¼ 0 for ~m ¼ 1; . . . ; ~nwave.

3.3. Piecewise linear reconstruction

The piecewise linear wave solutions fW ~mðxÞ are described by a linear variation in the cells eA ~m~i
fW ~mðxÞ ¼ fW ~m~i
ðxÞ ¼

fWþ
~m~j
ð~xfront ~m~jþ1

� xÞ þ fW�
~m~jþ1
ðx� ~xfront ~m~j

Þ
~xfront ~m~jþ1

� ~xfront ~m~j

; ð21Þ
for x 2 eA ~m~i
and ~i ¼ ~j, where fWþ

~m~j
and fW�

~m~jþ1
are the right and left states of the fronts ~f ~m~j

and ~f ~m~jþ1
of the piecewise linear wave

solution fW ~mðxÞ, respectively. In determining the left and right states, fW�
~m~j

and fWþ
~m~j

, of the fronts ~f ~m~j
the front types ~f type ~m~j

need to be taken into account, see Fig. 6(b) and (c). The linearization should not affect the approximation of discontinuous
phenomena such as shock waves and contact discontinuities as true discontinuities. In that case the left and right states of
the linearization are set to be equal to those of the piecewise constant wave solution
fW�

~m~j
¼ eV�~m~j

; fWþ
~m~j
¼ eVþ~m~j

; ð22Þ
if ~f type ~m~j
2 fsw; cdg, with eV�~m~j

and eVþ~m~j
the left and right states of the front ~f ~m~j

of the piecewise constant wave solution eV ~mðxÞ,

respectively. In the approximation of continuous phenomena the linearization should also result in a continuous function by
defining
fW ~m~j

¼ fW�
~m~j
¼ fWþ

~m~j
; ð23Þ
if ~f type ~m~j
2 flch; ich; rch; lcw; icw; rcwg, where fW ~m~j

is the value of the piecewise linear wave solution fW ~mðxÞ at front ~f ~m~j
. The

actual flow conditions at the fronts representing continuous phenomena are given by the left neighboring state for leftmost
characteristics and contact waves



Fig. 5. Wave decomposition.

2726 J.A.S. Witteveen / Journal of Computational Physics 229 (2010) 2719–2739
fW ~m~j
¼ eV�~m~j

; ð24Þ
for ~f type ~m~j
2 flch; lcwg, and equivalently for rightmost characteristics and contact waves
fW ~m~j
¼ eVþ~m~j

; ð25Þ
for ~f type ~m~j
2 frch; rcwg. The linearization at internal characteristics and contact waves is given by the arithmetic average of

the left and right neighboring states
fW ~m~j
¼
eV�~m~j
þ eVþ~m~j

2
; ð26Þ
for ~f type ~m~j
2 fich; icwg. By combining (22)–(26) the left and right states at the fronts ~f ~m~j

after the linearization can be sum-

marized as
fW�
~m~j
¼

eV�~m~j
; ~f type ~m~j

2 fsw; cd; lch; lcwg;

eVþ~m~j
; ~f type ~m~j

2 frch; rcwg;

1
2 ðeV�~m~j

þ eVþ~m~j
Þ; ~f type ~m~j

2 fich; icwg;

8>>>><>>>>: ð27Þ



Fig. 6. Linearization.
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and
fWþ
~m~j
¼

eV�~m~j
; ~f type ~m~j

2 flch; lcwg;

eVþ~m~j
; ~f type ~m~j

2 fsw; cd; rch; rcwg;

1
2 ðeV�~m~j

þ eVþ~m~j
Þ; ~f type ~m~j

2 fich; icwg:

8>>>><>>>>: ð28Þ
In addition all wave solutions eV ~mðxÞ are enriched by nodes at locations of discontinuities in the other wave solutions to allow
for discontinuous changes of the spatial derivative of flow conditions in, for example, a rarefaction fan in interaction with a
shock wave or contact discontinuity. The left and right state at these additional nodes are determined by linear extrapolation
of the linearized left and right states fW ~mðxÞ, respectively. The values at the boundaries of the spatial domain are also found
by linear extrapolation from the interior.

The piecewise linear reconstruction of the front tracking solution eU linðxÞ is finally obtained by summing the linearized
wave solutions fW ~mðxÞ in an inverse of the wave decomposition step (18)
eU linðxÞ ¼ eU ref þ
X~nwave

~m¼1

fW ~mðxÞ; ð29Þ
see Fig. 6(a).



Fig. 7. Complex wave interactions with coinciding waves of the same family.
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3.4. Piecewise linear front tracking algorithm

The algorithm for computing the piecewise linear front tracking solution of the Euler equations can be summarized as
follows:

1. Find the piecewise constant front tracking solution using the improved front tracking method with the additional track-
ing and interaction modeling of the front numbers fnumberj

as given by front number interaction model hl (14) and tabu-
lated in dl (17);

2. Decompose the piecewise constant front tracking solution eUðxÞ at t ¼ ~t into its wave solutions eV ~mðxÞ for ~m ¼ 1; . . . ; ~nwave

using (18);
3. Linearize the wave solutions eV ~mðxÞ separately to fW ~mðxÞ by taking the front types ~f type ~m~j

into account according to (27) and
(28);

4. Construct the piecewise linear front tracking solution eU linðxÞ by summing the linearized wave solutions fW ~mðxÞ as given
by (29);

In order to construct the piecewise linear solution at multiple time levels, steps 2–4 can be repeated for different t ¼ ~t.
The piecewise linear reconstruction is able to achieve second order convergence, since the piecewise constant front tracking
method predicts the front locations with second order accuracy. Decomposing the front tracking solution into wave solutions
instead of only wave families is essential to apply the linearization algorithm in complex situations where multiple waves of
the same family coincide. An example of two overlapping contact waves is given in Fig. 7(a) as caused by two right running
shock waves crossing a left running centered rarefaction fan. A wave decomposition is necessary in this case for a consistent
linearization of the contact waves. Another example is shown in Fig. 7(b) for two temporarily coinciding left running rare-
faction waves caused by an intersection of two right running shock waves in a pre-existing left running rarefaction wave. A
number of fronts which are not essential for the example is omitted here for clarity of the figure.
4. Sod’s Riemann problem

The convergence behavior of the piecewise linear front tracking method is numerically studied first for Sod’s Riemann
problem as a standard test problem for the Euler equations in one spatial dimension on an infinite spatial domain in Section
4.1 and in a closed shock tube in Section 4.2.



Fig. 8. Sod’s Riemann problem on an infinite spatial domain for the piecewise linear (FT2) and piecewise constant (FT1) front tracking methods, and the
second order Godunov method (Godunov2).
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4.1. Infinite spatial domain

The initial condition of Sod’s Riemann problem consists of two constant states separated by a discontinuity at x ¼ 0. The
infinite spatial domain can be treated in the front tracking method by using two infinite cells left and right of the leftmost
and rightmost front, respectively. The infinite domain can also be truncated at locations far enough from x ¼ 0 such that the
boundaries do not cause wave reflections. The left and right state are given by [26]
u� ¼ 0;
p� ¼ 1;
q� ¼ 1;

8><>:
uþ ¼ 0;
pþ ¼ 0:1;
qþ ¼ 0:125:

8><>: ð30Þ
The evolution of the front tracking solution in space–time is shown in Fig. 8(a) up to t ¼ 1. The flow solution consists of a left
running centered rarefaction wave discretized using nf ¼ 8 characteristic fronts, a right running shock wave, and a contact
discontinuity which separates the left and right post-states. The resulting approximation for the piecewise linear and piece-
wise constant front tracking methods at t ¼ 1 is considered in Fig. 8(b) for the density q to visualize also the contact discon-
tinuity. The other primary flow quantities give rise to the same observations. Both approaches resolve the shock wave and
contact discontinuity as a true discontinuity. The two results differ in the approximation of the continuous variation of the
flow conditions in the rarefaction wave. The piecewise linear solution leads to a continuous representation of the rarefaction
wave in contrast to the staircase behavior resulting from the piecewise constant method.

The piecewise linear solution is constructed by first decomposing the piecewise constant solution into the three wave

solutions eV ~mðxÞ and reference value eU ref as shown in Fig. 8(c). The reference density is equal to its left most value of
~q ref ¼ 1. The solution is decomposed by grouping the fronts ~f ~m~j

with wave numbers ~vnumber ~m
of the: (1) rarefaction wave;

(2) contact discontinuity; and (3) shock wave. The corresponding front types ~f type ~m~j
are used in the linearization procedure

where the discontinuous phenomena are unaffected. The density in the rarefaction wave is linearized by averaging the left
and right value at the location of an internal characteristic. At the leftmost and rightmost characteristic the left and right
state is adopted, respectively.

The error convergence for the velocity u, pressure p, and density q at t ¼ 1 with respect to a fine reference solution in
Fig. 8(d) demonstrates that the piecewise linear reconstruction leads for this problem to a second order error convergence
rate as function of the number of characteristics nf discretizing the rarefaction wave. The employed L1 error measure is de-
fined as



Fig. 9. Sod’s Riemann problem in a closed shock tube for the piecewise linear (FT2) and piecewise constant (FT1) front tracking methods, and the second
order Godunov method (Godunov2) at t ¼ 0:5.
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eL1 ðtÞ ¼
kzðx; tÞ � zfineðx; tÞk1

kzfineðx; tÞk1
; ð31Þ
with z ¼ fu; p;qg. The second order convergence results in an up to four orders of magnitude smaller error than the first or-
der piecewise constant front tracking method. For comparison also results for the second order Godunov method [29] based
on an algebraic average flux limiter are shown as function of the number of spatial volumes in the finite volume discretiza-
tion. For the Godunov method the infinite spatial domain is truncated to x 2 ½�2;2� such that the wave phenomena do not
reach the boundaries for t 6 1. The result that the actual Godunov convergence rate reduces for this discontinuous solution
as anticipated to first order verifies the validity of the reference solution. The resulting error is also an order of magnitude
larger than for the first order front tracking method. This reflects the efficient discretization of the space–time domain
achieved by the front tracking algorithm. More advanced second order finite volume discretizations are beyond the scope
of this work, since the comparison is here intended for verification only.

4.2. Closed shock tube

A more challenging problem for front tracking methods involving front interactions is obtained by limiting the spatial
domain of Sod’s Riemann problem to a closed shock tube. In this section the initial conditions (30) are considered on the
domain
x 2 ½�0:2; 2�; ð32Þ
with reflective boundaries at x ¼ �0:2 and x ¼ 2. At a front interaction with a boundary a piston problem is solved in an anal-
ogous way to how a Riemann problem is used to resolve an interaction of two fronts. The space–time front tracking solution
with nf ¼ 16 fronts in the rarefaction wave discretization is shown in Fig. 9(a) up to t ¼ 1:5. The left running rarefaction wave
reflects on the left boundary before it interacts with the contact discontinuity and the shock wave reflected from the right
boundary at x ¼ 2. The solution is considered at the time levels t ¼ f0:5; 1; 1:5g denoted by the horizontal dotted lines.

At t ¼ 0:5 the rarefaction wave is reflecting from the left boundary, which leads to an interaction of the incident and re-
flected wave. This results in relatively small density gradients in the interaction region close to the wall for x 2 ½�0:2;�0:1� in
Fig. 9(b). The piecewise constant front tracking method gives in this region a tooth-shaped approximation due to the inter-
action of the two waves, see Fig. 10 for an enlarged view. The piecewise linear approach gives a continuous solution in both
the reflected rarefaction wave and the interaction region. This is achieved by the automatic introduction of a fourth wave
number for the reflected wave in the decomposition of Fig. 9(c). The incident and reflected rarefaction wave are then



Fig. 10. Zoom of Sod’s Riemann problem in a closed shock tube for the piecewise linear (FT2) and piecewise constant (FT1) front tracking methods at
t ¼ 0:5.

Fig. 11. Sod’s Riemann problem in a closed shock tube for the piecewise linear (FT2) and piecewise constant (FT1) front tracking methods, and the second
order Godunov method (Godunov2) at t ¼ 1 and t ¼ 1:5.
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linearized independently. The piecewise linear front tracking method maintains a second order convergence rate in the wave
interaction region as shown in Fig. 9(d).

The interaction of right running rarefaction wave number 4 with the contact discontinuity at t ¼ 1 shown in Fig. 11(a)
results in the creation of a reflected left running fan of characteristics, which is an isentropic compression wave. The discret-
ization of this reflection leads to a new wave number 5 in the wave solution decomposition of Fig. 11(c). Wave number 1 is
no longer present in the decomposition, since the reflection of the initial left running rarefaction wave onto the left boundary
has been completed before t ¼ 1. At t ¼ 1:5 the right running rarefaction wave 4 is reflecting from the right boundary and
also interacting with the reflected shock wave. The continuous change of entropy at the right of the curved shock wave path
in the shock wave/rarefaction interaction region is discretized using a series of contact waves. These phenomena are resolved
by three additional wave numbers, see Fig. 11(b) and (d). Also for these increasingly complex wave interactions, piecewise
linear front tracking remains second order accurate in Fig. 11(e) and (f). It is observed that the error increases slightly with
time for a fixed number of fronts per rarefaction wave, which is an intrinsic property of the front tracking method [17] and
caused by the increasing detail in the solution.
5. Two interacting blast waves problem

A classical test problem for assessing the performance of numerical methods in the presents of strong discontinuities is
the two interacting blast waves problem introduced by Woodward [32]. The blast waves shock tube problem on the domain
x ¼ ½0;1� is defined by the initial condition consisting of three uniform regions for the pressure
p ¼
1000; 0 < x < 0:1;
0:01; 0:1 < x < 0:9;
100; 0:9 < x < 1;

8><>: ð33Þ
and constant velocity u ¼ 0 and density q ¼ 1 between reflecting walls at x ¼ 0 and x ¼ 1. The solution until t ¼ 0:04 in-
volves the interaction of the strong shock waves and contact discontinuities with the reflections of the rarefaction waves
created at the jumps in the initial condition. This results in a highly complex interaction in the collision region as illustrated
by the space–time front tracking solution for a discretization of the rarefaction waves with d ¼ 0:1 in Fig. 12(a). The piece-
wise linear front tracking solution of the density q, velocity u, and pressure p at t ¼ 0:038 for d ¼ 0:05 of Fig. 12(b) to (d)
gives a smooth approximation of the continuous regions and a sharp resolution of the discontinuities. The detailed flow fea-
tures in the collision region clearly visible in the density profile around x ¼ 0:8 affect the velocity and pressure to a lesser
extend. The predicted flow field shows excellent agreement with the benchmark results presented in [33].
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The time evolution of the density q between t ¼ 0 and t ¼ 0:038 at times also considered in literature [33] is given in
Fig. 13. Initially for t 6 0:026 the density shows that the two sets of strong waves emanating from the left and right discon-
tinuity in the initial conditions reflect on the boundaries and interact with each other separately resulting in a maximum
density of q ¼ 6:0. After the intersection of the two shock waves the density peaks at q ¼ 28:52 for t ¼ 0:028 and decreases
with increasing time.

The error convergence for u, p, and q of piecewise linear front tracking is compared in Fig. 14 to that of piecewise constant
front tracking as function of d. The results show that the piecewise linear approximation achieves second order convergence
also in case of strong waves and their interactions for t 6 0:026. In the collision region for t P 0:028 the method converges to
second order accuracy at lower values of d due to the high level of detail in solution. The piecewise linear front tracking
method consistently achieves higher convergence rates and significantly lower errors than the first order piecewise constant
front tracking method.
6. Two-dimensional supersonic airfoil flow

The meshless front tracking method is also an effective approach for simulating two-dimensional supersonic steady Euler
flows. In that case the free stream flow direction instead of the time axis is treated as the hyperbolic coordinate. This ap-
proach is applicable if the velocity component in the direction of the undisturbed flow streamlines is supersonic throughout
the whole flow field. This implies, for example, an airfoil flow with attached shock waves at the sharp leading and trailing
Fig. 13. Density of the two interacting blast waves problem from t ¼ 0:01 to t ¼ 0:034 for d ¼ 0:05.





Fig. 15. Spatial domain decomposition for the two-dimensional supersonic airfoil flow.
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The considered geometry is a symmetrical circular-arc airfoil with chord length c ¼ 0:1 m, 12% thickness, and a leading
and trailing edge semi-opening angle of h0 ¼ 13:69�. In order to solve the airfoil flow problem for non-zero angle of attack the
flow domain is divided into three subdomains shown in Fig. 15. The three domains are separated by a horizontal line from
the leading edge pointing in the upstream direction and a vertical line through the trailing edge. The flow in domains I and II
can be resolved independently from each other and potentially in parallel due to the hyperbolicity of the problem. The solu-
tions of I and II at the x-coordinate of the trailing edge are used as boundary condition for domain III, which contains the
trailing edge shocks and the inviscid entropy wake behind the airfoil. For computing the aerodynamic forces on the airfoil
using surface pressure integration it is sufficient to consider domains I and II only.

The flow solutions for two cases with different free stream Mach numbers M1 ¼ 2 and M1 ¼ 2:5 and angle of attack
a ¼ 5� are given in Fig. 16 in terms of the Mach number field and the computational grid for a discretization of the airfoil
with 40 points at each side. The piecewise linear front tracking results show a sharp resolution of the curved leading and
trailing edge shock waves also farther away from the airfoil. This property makes the method particularly useful for resolving
the flow features in the far field. The case for M1 ¼ 2:5 results in sharper shock wave angles with respect to the free stream
flow direction and a larger range of Mach numbers in the flow field. Fig. 16(c) and (d) illustrate the highly efficient discret-
ization of the spatial flow domain with only two cells for representing the undisturbed flow upstream of the leading edge
shock waves. The curvature of the shock waves is resolved by the interaction of the shock waves with the rarefaction
Fig. 16. Mach field and grid for the two-dimensional supersonic airfoil flow.
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characteristics emanating from the airfoil surface. This results in the creation of reflected characteristics and contact waves.
These secondary phenomena lead to the prediction of non-uniform flow conditions downstream of the trailing edge shock
waves.

The rectangular contour in Fig. 16(a) and (b) denotes the integration contour used in an experimental campaign for Par-
ticle Image Velocimetry (PIV) [22] based load determination of the same configuration by Souverein et al. [27]. The exper-
iments on a full span model of 280 mm width were performed in the TST-27 blow-down transonic–supersonic wind tunnel
of the TU Delft. The PIV velocity measurements are based on illumination of 50 nm TiO2 seeding particles in a 1.5 mm thick
light sheet. The 146.5 � 80.1 mm field of view is imaged with a 1280 � 1024 pixel CCD camera. The image analysis was car-
ried out with a window size of 31 � 31 pixels. For more detailed information is referred to [27].

The validation comparison of the computed flow conditions and the measured velocities along the contour is given in
Fig. 17. The flow conditions along the contour are displayed in clockwise direction starting at the top left corner as function
Fig. 17. Computed flow conditions and measured velocity components (dashed lines) on the integration contour for the two-dimensional supersonic airfoil
flow.

Fig. 18. Zoom of the computed and measured (dashed lines) velocity components on the integration contour for the two-dimensional supersonic airfoil
flow at M

¼ 2.



Fig. 19. Lift and drag coefficients for the two-dimensional supersonic airfoil flow.
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of the curvilinear abscissa normalized by the airfoil chord s/c. The dotted vertical lines indicate the location of the corners of
the integration contour. The velocity components predicted by the front tracking solution of the Euler equations closely
agree with the experimental data, which indicates that viscous effects are generally small in this flow problem. The numer-
ical and experimental results also show the same trends for the velocity components as function of the Mach number. The
numerical solution shows clearly the inviscid entropy wake behind the airfoil for the streamwise velocity component u, see
the enlarged view in Fig. 18 for M1 ¼ 2. The entropy wake is largest behind the upper surface due to the high pre-shock
Mach number in combination with the relatively high curvature of the trailing edge shock wave. The slip line emanating
from the trailing edge of the airfoil is also resolved as a true discontinuity. In the experimental results the local effect of
the viscous wake can be recognized. Numerical results for the other flow conditions show a constant pressure over the slip
line, and small discontinuities in the density and temperature.

Finally the lift-drag curve of the airfoil for angles of attack between a ¼ 0� and a ¼ 6� is considered in Fig. 19 based on
pressure integration over the airfoil surface in terms of the lift and drag coefficients
Cl ¼
L

1
2 q1u2

1c
; ð36Þ

Cd ¼
D

1
2 q1u2

1c
; ð37Þ
with lift and drag forces L and D, and coefficients C l and Cd, respectively. As an illustration the second order convergence of
Cl and Cd for M1 ¼ 2 and a ¼ 5� is given in Fig. 19(a) for an increasing number of airfoil surface discretization points. The lift-
drag curve of Fig. 19(b) shows the typical parabolic trend with lower lift and drag coefficients for the higher Mach number of
M1 ¼ 2:5 in the considered range of angles of attack.
7. Conclusions

A second order front tracking method for the Euler equations is developed based on a piecewise linear reconstruction of
the piecewise constant front tracking solution. The piecewise linear solution is obtained by first decomposing the front track-
ing approximation into wave solutions. The wave components are then linearized separately based on the physical phenom-
ena of the fronts as tracked by the front types of the improved front interaction model. For the wave decomposition also front
numbers are tracked to denote the wave to which the fronts belong. The front interaction model is extended to resolve the
interaction of the front numbers at front intersections.

Second order convergence results for Sod’s Riemann problem lead to an up to four orders of magnitude smaller error than
the first order piecewise constant front tracking method. After truncation of the spatial domain to a closed shock tube the
method maintains second order convergence in the presence of front interactions and reflections. A comparison with a sec-
ond order Godunov finite volume method verifies the consistency of the developed approach. The solution of the two inter-
acting blast waves problem shows a sharp resolution of discontinuities and a smooth approximation of continuous flow
regions. An error convergence study shows that the piecewise linear front tracking method also converges to second order
accuracy for the interaction of strong waves.

The validation study for a two-dimensional supersonic airfoil flow over a range of angles of attack up to a ¼ 6� and for
Mach numbers M1 ¼ 2 and M1 ¼ 2:5 shows a good agreement with the experimental PIV data. The resulting computational
grids illustrate the highly efficient discretization of the spatial flow domain by the front tracking method. The predicted lift
and drag coefficients in the lift-drag diagram also show a second order convergence rate.

Interesting directions for further research include the mathematical proof of the second order accuracy and the exten-
sion to higher order convergence rates involving continuously varying front velocities. The second order front tracking
method has been developed here for one-dimensional unsteady and two-dimensional supersonic flows. Extensions to
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higher-dimensional unsteady problems will be considered in future work by employing the dimensional splitting tech-
nique. The front tracking algorithm and the piecewise linear reconstruction are then applied to each spatial coordinate
independently on a Cartesian mesh. The flow in the different spatial directions is in that case coupled in the spatial vol-
umes of the multi-dimensional mesh.

Acknowledgments

The author would like to acknowledge Louis Souverein, Bas van Oudheusden, and Fulvio Scarano for providing the exper-
imental PIV velocity measurements in the collaborative validation study for the two-dimensional supersonic airfoil flow
problem. Barry Koren is also acknowledged for his suggestions regarding the second order Godunov finite volume scheme.
Appendix A. Front number interaction model

In this appendix the front interaction model for the front numbers is introduced that prescribes the wave numbers
wnumberl

of the created waves at a front intersection as function of the front types, front families, and front numbers of the
intersecting fronts. The wave number wnumberl

can be equal to the front number of one of the intersecting fronts or a new
wave number.

In Tables 1–3 the front number interaction model hl is given for l ¼ fleft;middle; rightg. The front type ftypej
and family

ffamilyj
of the intersecting left and right front, jleft and jright, are shown vertically and horizontally, respectively. A front type ftypej

can be a shock wave (sw), left/internal/right characteristic of a fan of characteristics (lch/ich/rch), contact discontinuity (cd),
or left/internal/right contact wave of a continuous change in entropy (lcw/icw/rcw). The front families ffamilyj

are left running
(�), right running (+), and waves with no relative velocity with respect to the local fluid (0).

The predicted wave number wnumberl
is given by an ‘‘l” or ‘‘r”, if wnumberl

is equal to the front number fnumberj
of the left or

right intersecting front, jleft or jright, respectively. An ‘‘n” denotes that the created wave wl has a new wave number. Not all
front intersections of Tables 1–3 can occur in practice. For example, two fronts of family (0) with no relative velocity with
respect to the surrounding fluid cannot intersect. These physically impossible front intersections are given by a ‘‘�”. The pre-
scribed wave number wnumberl

is then assigned to the created waves according to (14). The front numbers are derived from
wnumberl

as given by (16).
Table 1
Front number interaction model hl for the left created wave l ¼ left.

Type Right sw sw lch lch rch rch ich ich cd lcw rcw icw
Left Fam. � + � + � + � + 0 0 0 0

sw � n � l � l � l � � � � �
sw + r n r n r n r n n n n n
lch � r � � � n � n � � � � �
lch + r n r � r n r n n n n n
rch � r � � � � � � � � � � �
rch + r n r � r � r � n n n n
ich � r � � � n � n � � � � �
ich + r n r � r n r n n n n n
cd 0 r � r � r � r � � � � �
lcw 0 r � r � r � r � � � � �
rcw 0 r � r � r � r � � � � �
icw 0 r � r � r � r � � � � �

Table 2
Front number interaction model hl for the middle created wave l ¼ middle.

Type Right sw sw lch lch rch rch ich ich cd lcw rcw icw
Left Fam. � + � + � + � + 0 0 0 0

sw � n � n � n � n � � � � �
sw + n n n n n n n n r r r r
lch � n � � � n � n � � � � �
lch + n n � � � n � n r r r r
rch � n � � � � � � � � � � �
rch + n n � � � � � � r r r r
ich � n � � � n � n � � � � �
ich + n n � � � n � n r r r r
cd 0 l � l � l � l � � � � �
lcw 0 l � l � l � l � � � � �
rcw 0 l � l � l � l � � � � �
icw 0 l � l � l � l � � � � �



Table 3
Front number interaction model hl for the right created wave l ¼ right.

Type Right sw sw lch lch rch rch ich ich cd lcw rcw icw
Left Fam. � + � + � + � + 0 0 0 0

sw � n � n � n � n � � � � �
sw + l n l l l l l l l l l l
lch � n � � � n � n � � � � �
lch + l r l � l n l n l l l l
rch � n � � � � � � � � � � �
rch + l r l � l � l � l l l l
ich � n � � � n � n � � � � �
ich + l r l � l n l n l l l l
cd 0 n � n � n � n � � � � �
lcw 0 n � n � n � n � � � � �
rcw 0 n � n � n � n � � � � �
icw 0 n � n � n � n � � � � �
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