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are usually limited to first order accuracy, since they are based on a piecewise constant
approximation of the solution. Here second order convergence is achieved by deriving a
piecewise linear reconstruction of the piecewise constant front tracking solution. The lin-
earization is performed by decomposing the front tracking solution into its wave compo-
nents and by linearizing the wave solutions separately. In order to construct a physically
Piecewise linear approximation correct linearization, the physical phenomena of the front are taken into account in terms
Riemann problem of the front types of the previously developed improved front interaction model. This front
Blast waves problem interaction model is also extended to include front numbers used in the wave decomposi-
Supersonic airfoil flow tion. It is illustrated numerically for Sod’s Riemann problem, the two interacting blast
waves problem, and a two-dimensional supersonic airfoil flow validation study that the
proposed front tracking method achieves second order convergence also in the presence
of strong discontinuities and their interactions.

Keywords:
Hyperbolic conservation laws
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1. Introduction

Front tracking is known to be an effective tool for resolving discontinuities in the solution of hyperbolic conservation
laws. One type of front tracking methods initiated by Richtmyer and Morton [23] uses a fixed background mesh to solve
for continuous phenomena and introduces additional degrees of freedom to model discontinuities such as shock waves
and two fluid interfaces. This branch of front tracking has since then been extended to resolve complex instabilities and
bifurcations by Moretti [16], Swartz and Wendroff [28], and Chern, Glimm, and coworkers [4,9-11]. This includes wave
labeling techniques and the combination with second order finite volume discretizations on the background mesh [3]. A the-
oretical study on this type of front tracking is presented in [6] and in [5,12] conservative front tracking methods are
considered.

A second type of meshless front tracking methods exists that resolves both the discontinuities and the continuous regions
of the solution domain [15]. Meshless front tracking introduced by Risebro and Tveito [25] does not require a background
mesh by approximating continuous phenomena using a series of small discontinuities. This class of front tracking methods
has been used as an analytical tool for studying scalar equations and systems of hyperbolic conservation laws [1,2]. It has
also been employed as a numerical scheme to solve one-dimensional problems in shallow water flows [13], gas dynamics
[18], and polymer flooding [24]. One-dimensional front tracking is of interest in, for example, pipe flows and shock tube
problems. An equivalent algorithm can also be used to simulate two-dimensional supersonic flows [31]. Meshless front
tracking has been extended to higher dimensions using dimensional splitting techniques by Holden, Lie, et al. [14,19].
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Fig. 1. Front tracking discretization in space-time.

Here the branch of meshless front tracking methods is considered as a numerical approach for solving the hyperbolic Eu-
ler equations of inviscid fluid dynamics. The numerical algorithm is based on a piecewise constant approximation of the
solution of local Riemann problems. The first step in the solution procedure for an initial value problem is the piecewise con-
stant approximation of the initial conditions. At the discontinuities in this discretization the flow conditions resemble the
initial conditions of a local Riemann problem. The piecewise constant approximation of the solution of these Riemann prob-
lems results in the introduction of new discontinuities which move in time. The paths of these discontinuities are tracked by
fronts in the space-time domain, see Fig. 1. In nonlinear problems the front velocities are in general different for different
fronts, such that they can intersect at a later time. At an intersection point the discontinuous solution is locally again equal to
the initial conditions of a Riemann problem. The piecewise constant approximation of the solution of this Riemann problem
results in the introduction of more fronts which can again intersect with other fronts and so on, until a certain time t = is
reached.

Recently an improved front interaction model was proposed to obtain a physically more accurate simulation of the front
interactions for the Euler equations [31]. In the improved model the physical phenomena of the fronts are explicitly taken
into account to predict the wave pattern that is created at an intersection point based on gas dynamics theory. To that end,
front types are assigned to the fronts to track the wave phenomena that the fronts represent. This information is then used in
a modified Riemann solver, instead of solving a standard Riemann problem in the intersection points.

The piecewise constant front tracking solution is effective for resolving shock waves and contact discontinuities as true
discontinuities. In that sense the method contains no artificial numerical viscosity and it can be considered an uncondition-
ally stable scheme [14]. However, due to the piecewise constant approximation of the solution, front tracking methods usu-
ally result in first order error convergence [15]. It has been illustrated numerically that integral quantities are approximated
with second order accuracy for the conservation of mass, momentum, and energy [31], and the location of the fronts [30].
Second order convergence for a scalar conservation law in one dimension was proven by Lucier [21] for a piecewise linear
approximation through nodes moving according to the method of characteristics.

In this paper, a second order front tracking method for the system of Euler equations is proposed by using the front types
of the improved front interaction model. The second order accurate solution is obtained by a piecewise linear reconstruction
of the piecewise constant front tracking solution. In contrast to scalar equations, systems of conservation laws allow for mul-
tiple waves to coexist in any location in the space-time domain. The piecewise linear approximation is, therefore, con-
structed by decomposing the front tracking solution into a series of wave solutions and by linearizing the wave
components separately. The piecewise linear front tracking solution is finally obtained by summing the linearized wave solu-
tions. This approach is based on the observation that, although the nonlinear problem itself cannot be solved by summing
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Fig. 2. Front tracking notation in space-time.

wave solutions, the nonlinear front tracking solution can nonetheless be decomposed into a summation of wave components.
In order to obtain a physically consistent linearization the front types of the improved front interaction model are employed.

In contrast to the earlier first order improved front tracking method [31] the current work presents a front tracking meth-
od which reaches a second order convergence rate. To enable the second order piecewise linear reconstruction, front
numbers and a front number interaction model are introduced into the formulation. The application of the method to two-
dimensional supersonic airfoil flow is also extended to non-zero angles of attack using a domain decomposition approach.

The piecewise linear front tracking method is introduced in Section 3 after a brief review of the standard and improved
meshless front tracking methods in Section 2. In Sections 4 and 5 the properties of the developed method are analyzed in
application to Sod’s Riemann problem and the two interacting blast waves problem, respectively. The results are compared
with the first order front tracking method and a second order Godunov finite volume scheme. Results for a two-dimensional
supersonic airfoil flow problem are validated with respect to experimental PIV velocity measurements in Section 6. The pa-
per is concluded in Section 7.

2. Front tracking for the Euler equations

Meshless front tracking for the Euler equations is described in Section 2.1. In Section 2.2 the formulation of the improved
front interaction model is revisited in more detail, since its front types are used in the linearization algorithm.

2.1. Meshless front tracking

The Euler equations for one-dimensional unsteady inviscid flow without heat conduction are given in conservation form
by

ou oFU)
T =0 (1)
where
o pu
U= pu |, F= pu2 +P |, U(X7 0) = UO(X)7 (2)
pE puH

with state vector U(x, t), flux vector F(x,t), and initial condition Up(x) in terms of density p(x,t), velocity u(x, t), static pres-
sure p(x,t), total energy E(x, t), and enthalpy H(x, t) as function of spatial coordinate x € R and time t € R, see for example
[7]. A perfect gas is considered for which holds E = (1/(y — 1))p/p +u?/2 and H = E + p/p, with ratio of specific heats
Y =Cp/Cv.

A front tracking method approximates the solution of (1) in the space-time plane by a piecewise constant function based
on uniform flow conditions U; in ng cells A; withi=1,..., ney, see Fig. 2. The cell boundaries are composed of ng, linear
front paths f; with j = 1,..., ngon,, where the fronts follow physical wave phenomena, such as shock waves, contact waves,
and characteristics. The starting and end points of the front paths f; form a set of ny.¢e Nodes ny = (xp,, t, ) in space-time with
k=1,...,nnode. Pointers are used to establish the relation between cells A; and fronts f;, and fronts f; and nodes ny.

In the first step of the front tracking algorithm the piecewise constant approximation of the initial conditions Uy () results
in the introduction of nyeqe, nodes ny with t, =0 for k =1,..., N0, at the discontinuities in the discretized initial condi-
tions. At the nodes n, the flow conditions resemble locally the initial conditions of a Riemann problem given by

U, X, <0,
o= {2 3
’ K = )
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fork =1,...,Nyoge,, with U~ and U" the constant left and right states of node ny, respectively. The piecewise constant approx-
imation of the solution of the n,,¢e, Riemann problems leads to the creation of ngon, fronts f; with constant front velocities
Usrony; €Manating from the nodes with j=1,... Ngon,. At the first intersection of fronts at t=t; a new node n, with
k = Npoge, + 1 and t,, = t4z is created and a Riemann problem is solved, and so forth until t = t.

The accuracy of the simulation is mainly governed by the number of nodes used in the discretization of continuous initial
and boundary conditions, and the number of fronts n; that is used to discretize centered rarefaction fans. The number of
fronts ng can be determined adaptively based on the strength of the rarefaction fan by a user defined discretization param-

eter &
nf = max {2, Pg"ﬂ }, (4)

with Aq.w the strength of the centered rarefaction wave (crw) defined as

1 \ul—u,| |pl_pr‘ ‘pl_pr|
Acow = = + + , 5
3 (%(un Fud) T+ Ip) T 5o+ 10,) )

where subscripts | and r denote the left and right state of the wave, respectively. The stop criterion for the iterative solu-
tion of the Riemann problems also affects the simulation accuracy. The Riemann solver used here is based on an iter-
ation of analytical isentropic Riemann solutions comparable to the one described in [8]. The resulting piecewise constant
front tracking solution converges with first order accuracy [15]. Usually only interactions of two fronts are considered
without loss of generality [1]. The build up of the number of fronts nge, is controlled by disregarding weak fronts.
To that end the strength of each front Afront; is described in analogy to (5) for centered rarefaction fans, where the sub-
scripts 1 and r refer in this case to the left and right state of the front. A cut-off criterion Jgop is prescribed to eliminate
weak fronts for which holds

Afrontj < 5fr0nt7 (6)

from the discretized solution of the Riemann problem. The left and right state of the neglected front are then averaged.

2.2. Improved front interaction model

In the improved front tracking method for the Euler equations [31] a better physical modeling of the front interactions is
obtained by explicitly taking into account the wave phenomena that the fronts represent. The following front types fiype, are
used to track the wave phenomena of the fronts

fiyve; € {sw, Ich, ich, rch, cd, lew, icw, rew}, (7)

forj=1,..., ngene. The front types distinguish between shock waves (sw), left/internal/right characteristics of a fan of char-
acteristics (Ich/ich/rch), contact discontinuities (cd), and left/internal/right contact waves discretizing a region of continuous
change of entropy (lcw/icw/rcw). Also front families

ffamilyj S {_707+}7 (8)

forj=1,..., ngon, are assigned to the fronts to denote left running (—), right running (+), and convective (0) fronts. The front
type fiype; and family feamiy, govern both the interaction with other fronts in the improved front interaction model and the
relation for the front velocity Ufront; IN terms of its left and right state. The interaction model prescribes the wave pattern orig-
inating from an intersection point in terms of the wave types

Wiype, € {sSW, Ich, ich, rch, cd, lew, icw, rew, crw}, (9)

with | = {left, middle, right}, of the created left, middle, and right waves w; as function of fype; and framiy, of the two intersect-
ing fronts, jier and jyig, see Fig. 3(a). Wave types wiyy, differ from front types fiype, in the sense that the former include cen-
tered rarefaction waves (crw). A centered rarefaction wave is discretized by a series of fronts representing characteristics
(Ich/ich/rch). The model consists of three functions g; for which holds

Wtypel =8 (ftypej]e& 7ftype]vrigh[ aﬁ“amilyjleft 7J‘1“amilyj“ght )7 (1 0)

for | = {left, middle, right}. The functions g, are derived from theoretical gas dynamics [20] and are given in tabulated form in
[31]. The front types fiype; of the fronts created at the intersection point are then derived from the wave types wype, as follows

= Wtype,7 Wtype, # Cl‘W7
f type;

€ {Ich,ich,rch}, Wiype = crw, (11)

if front f; is part of wave w;. The front families ftmiy, are determined by whether the front is created as part of the left, middle,
or right wave of the solution of the Riemann problem
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Fig. 3. Front interaction models.

— I=left,
Samiy, = 0, [ =middle, (12)
+, l=right,

with front f; part of wave w;. A non-standard Riemann solver, which takes into account whether the predicted wave types
Wiype, are isentropic or possibly non-isentropic, is used to compute the post states U; in the new cells and the velocities of
the created fronts Usront;- The front types fiype, are also used in controlling the increase of the number of fronts with time
by neglecting reflections of fronts that discretize continuous phenomena at front interactions with other continuous phe-
nomena fronts (Ich/ich/rch/lcw/icw/rcw).

The interaction of, for example, two centered rarefaction waves is in this framework resolved as follows. The rarefaction
waves are first discretized by a series of small discontinuities using characteristic fronts (Ich/ich/rch). The discrete interac-
tion of the waves then results in a discontinuous change of the flow conditions at an intersection point of two of these fronts.
Although the continuous problem does not involve a Riemann problem, the front interaction is resolved by solving an isen-
tropic Riemann problem to take the isentropic nature of the reflected fronts into account. The Riemann problem is solved
using one iteration of the Riemann solver, since the iterative Riemann solver is based on the analytical solution of the isen-
tropic Riemann problem. This process is repeated for all intersections of the characteristic fronts.

3. Second order piecewise linear reconstruction

In addition to tracking the front types and front families, also wave numbers of the fronts need to be tracked for the piece-
wise linear reconstruction of the front tracking solution. The assignment of front numbers is considered in Section 3.1 in
combination with the front interaction model for the front numbers. Tracking the wave numbers is necessary for the wave
decomposition of the front tracking solution, described in Section 3.2, in order to linearize the wave solutions separately as
discussed in Section 3.3. The last step of the algorithm summarized in Section 3.4 is the summation of the linearized wave
solutions to obtain the piecewise linear front tracking solution.

3.1. Wave tracking

In order to perform the wave decomposition the ny,,. waves in the front tracking solution in space-time are numbered
using wave numbers vnymper,, With m = 1, ..., nyav.. To distinguish between these waves in space-time vz, and the waves w,
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Fig. 4. Front number interaction examples.

created at a front interaction a different notation is used for both cases. In this context a wave can be a shock wave, a fan of
characteristics, a contact discontinuity, or a region of continuous change of entropy. To track which fronts belong to which
wave, the wave numbers vnymber,, are assigned to the fronts in the form of front numbers fnumber’ for which holds

fnumber, = Z)numberm 3 ( 1 3)

if front f; is part of wave vy,. In order to assign front numbers fnumberj to new fronts after a front intersection the interaction
model has to be extended to prescribe also the wave numbers Wyumper, Of the created waves with I = {left, middle, right}. The
wave numbers Wyumper, are given by an additional front interaction function h; which depends on the front types ftypej, fam-
ilies framiy,, and numbers fuumber, Of the two intersecting fronts, jier and jgn,

Whumber, = h (ftypej 7ftypejngm ,ffamilyjlcft ’ffam"yh-igm 7fnumberjleﬂ 7fnumberjright ), (14)

left

with | = {left, middle, right}, see Fig. 3(b). The function h; can return the front number of one of the intersecting fronts or a
new wave number

hl S {fnumberj]eﬂ 7fnumberjngm ,New wave number}, (]5)

for I = {left, middle, right}. The front number interaction function h; is derived from gas dynamics theory in analogy to the
improved front interaction model g, and presented in tabulated form in Appendix A.

An example of the intersection of a right and left running shock wave, sw+ and sw—, is given in Fig. 4(a). It results in the
continuation of the two shock waves and the creation of a contact discontinuity cd0. The front numbers fnumber} of the created
left and right shock waves are equal to those of the intersecting right and left shock wave, j,gp,, and ji.q, respectively. The
contact discontinuity has a new wave number.

If h; prescribes that the created wave number is different from the wave numbers of the intersecting fronts, the number of
waves is increased by one, Nyave := Nwave + 1, and the created wave is assigned the new wave number, Wpymber, = Nwave. The
number of the wave is then also assigned to the new fronts f; which are part of the wave w; according to

fnumber» = Whumber; - (16)
j
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In order to assign the new wave number to the entire wave and not only to its first created front, the relation between the
created wave numbers Wyymper, and the intersecting front numbers, fnumberﬂeﬁ and fnumberngm, is stored in another tabulated
function d, with | = {left, middle, right}. At a later intersection of front numbers which are already tabulated in dj, the created
wave numbers are assigned according to table d,

Whumber, = dl (fnumberjIEft 7fnumberjright )7 (1 7)
for I = {left, middle, right}. If the intersecting front numbers fnumberj] . and f number;are not yet tabulated in d,, then function
ef rigl
h; (14) is used to create the entry for the combination of fm,mberjI . and f number; . in d,. In this way, for example, all contact
e righ

waves cwO created at the interaction of a right running centered rarefaction fan crw+ and a left running shock wave sw—
are assigned the same new front number, see Fig. 4(b). Storing also the information of the front types fiype and families

Jramiy; of the intersecting fronts, jier and jigp, in table d; is not necessary.

3.2. Wave decomposition

The front numbers fnumbe” are used to decompose the front tracking solution at t = ¢ into wave solutions. The piecewise
constant solution U(x (x) in the ng cells A at t =t is denoted from left to right by U fori= 1,...,Ney. The tilde is used to
differentiate between quantities at t = t and those in space-time. The approx1mat10n is dlscontmuous at front locations
xfmm = xnode for j ] =1,..., Ngon, With j ] —kand 7 Nfront = Mnode- The NMyave Wave solutions present in the front tracking solution
att =t are glven by V ( ) for m =1,. .., fiyave such that holds

Nwave

X)=Unt+ Y Val), (18)
m=1

where the reference value U,ef; U (Xrer) is chosen to be the value of U(x (x) in the leftmost point x,s of the spatial domain, see
Fig. 5(a). The wave solutions V4 (x) contain the fifon, fronts f,,, for which holds fnumbﬂ = Unumber,, and the left and right
boundary fronts. The piecewise constant wave solution V m(X) is "then given by

V,ﬁ(X) = ‘7mi, (19)

for x € A = [X foon, » X front,, | With i =j and
! - i J+1
i

Vo = YUy — U, (20)

with lfl;‘ and ﬁ;z the left and right states of frontf,ﬁ;, respectively, see Fig. 5(b) and (c). For the wave solutions V,ﬁ(x) holds
J J

that the solution in the first cell is V,ﬁl =0form=1,..., Nyaye.
3.3. Piecewise linear reconstruction

The piecewise linear wave solutions W,ﬁ(x) are described by a linear variation in the cells ﬁm;

W% ()?frontm, - X) + W;, . (X - )?frontm,_)
Win(x) = Wi, () = — ! - L, (1)

Xfront,;,i - Xfrontﬁ,j
J+1 J

for x € Ay and i = j, where VT/;W and W,; are the right and left states of the fronts fmj and f,ﬁm of the piecewise linear wave
! i i+

solution W, (x), respectively. In determining the left and right states, ‘7\7,;17 and r\/\v/;,, of the fronts fmj the front types ftypem,
J J j

need to be taken into account, see Fig. 6(b) and (c). The linearization should not affect the approximation of discontinuous
phenomena such as shock waves and contact discontinuities as true discontinuities. In that case the left and right states of
the linearization are set to be equal to those of the piecewise constant wave solution

W, =V, W=V, (22)

i J J J
if f”typem € {sw, cd}, with \7;, and \7;; the left and right states of the frontffnj of the piecewise constant wave solution \7,;,(x),
J i J

respectively. In the approximation of continuous phenomena the linearization should also result in a continuous function by
defining

Wiy = Wy = Wp,, (23)
ifftypem, € {Ich, ich, rch, lcw, icw, rcw}, where V\N/,ﬁj is the value of the piecewise linear wave solution W,ﬁ(x) at frontf,ﬁ;. The
]

actual flow conditions at the fronts representing continuous phenomena are given by the left neighboring state for leftmost
characteristics and contact waves
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Fig. 5. Wave decomposition.
W,;,; = V,;,j, (24)

for ftypemj € {Ich, lcw}, and equivalently for rightmost characteristics and contact waves
Wiy =V, (25)
for ftypemj € {rch, rcw}. The linearization at internal characteristics and contact waves is given by the arithmetic average of
the left and right neighboring states
= \7;;1} + V;,j_
m; = 5
forftypemj € {ich, icw}. By combining (22)-(26) the left and right states at the fronts fmj after the linearization can be sum-

(26)

marized as
V%, ftypem; € {sw, cd,Ich,lcw},
i J
W%: - V%, ftypeﬁh € {rch,rew?}, (27)
J J

3(Vi +V5). fupe, € fich,icw},

i



J.A.S. Witteveen /Journal of Computational Physics 229 (2010) 2719-2739 2727

D‘ref
As
Ulin
fs x e
m=1
Am A
r—ﬁl fr’ﬁz fm3 fm4 X fm5
(b) W (T}
_ m=2
Wi
sSw
Ar’ﬁz
0 —
AR 1
(c) Wa(2)
Fig. 6. Linearization.
and
rfnf ftypemj_ S {ICh7 ICW},
Wi =V, Feypen, € {sW,cd, rch, rew}, 28

g J J

%(\7;5 + Vi), fupe, € {ich,icw}.
J J

In addition all wave solutions V(x) are enriched by nodes at locations of discontinuities in the other wave solutions to allow
for discontinuous changes of the spatial derivative of flow conditions in, for example, a rarefaction fan in interaction with a
shock wave or contact discontinuity. The left and right state at these additional nodes are determined by linear extrapolation
of the linearized left and right states W (x), respectively. The values at the boundaries of the spatial domain are also found
by linear extrapolation from the interior. N

The piecewise linear reconstruction of the front tracking solution Uji,(x) is finally obtained by summing the linearized
wave solutions W (x) in an inverse of the wave decomposition step (18)

Nwave

f]lin(x) = E]ref + Z Wm(X), (29)

see Fig. 6(a).
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Fig. 7. Complex wave interactions with coinciding waves of the same family.

3.4. Piecewise linear front tracking algorithm

The algorithm for computing the piecewise linear front tracking solution of the Euler equations can be summarized as
follows:

1. Find the piecewise constant front tracking solution using the improved front tracking method with the additional track-
ing and interaction modeling of the front numbers fyumper, as given by front number interaction model h; (14) and tabu-
lated in d, (17);

2. Decompose the piecewise constant front tracking solution U (x) at t =t into its wave solutions V,;,(x) form=1,... Nyaye
using (18); .

3. Linearize the wave solutions Vm(x) separately to W (x) by taking the front types ftypem: into account according to (27) and
(28); '

4. Construct the piecewise linear front tracking solution Uy, (x) by summing the linearized wave solutions Wm(x) as given
by (29);

In order to construct the piecewise linear solution at multiple time levels, steps 2-4 can be repeated for different t = t.
The piecewise linear reconstruction is able to achieve second order convergence, since the piecewise constant front tracking
method predicts the front locations with second order accuracy. Decomposing the front tracking solution into wave solutions
instead of only wave families is essential to apply the linearization algorithm in complex situations where multiple waves of
the same family coincide. An example of two overlapping contact waves is given in Fig. 7(a) as caused by two right running
shock waves crossing a left running centered rarefaction fan. A wave decomposition is necessary in this case for a consistent
linearization of the contact waves. Another example is shown in Fig. 7(b) for two temporarily coinciding left running rare-
faction waves caused by an intersection of two right running shock waves in a pre-existing left running rarefaction wave. A
number of fronts which are not essential for the example is omitted here for clarity of the figure.

4. Sod’s Riemann problem

The convergence behavior of the piecewise linear front tracking method is numerically studied first for Sod’s Riemann
problem as a standard test problem for the Euler equations in one spatial dimension on an infinite spatial domain in Section
4.1 and in a closed shock tube in Section 4.2.
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Fig. 8. Sod’s Riemann problem on an infinite spatial domain for the piecewise linear (FT2) and piecewise constant (FT1) front tracking methods, and the
second order Godunov method (Godunov2).

4.1. Infinite spatial domain

The initial condition of Sod’s Riemann problem consists of two constant states separated by a discontinuity at x = 0. The
infinite spatial domain can be treated in the front tracking method by using two infinite cells left and right of the leftmost
and rightmost front, respectively. The infinite domain can also be truncated at locations far enough from x = 0 such that the
boundaries do not cause wave reflections. The left and right state are given by [26]

u =0, ut =0,
p=1, p* =01, (30)
p- =1, pt =0.125.

The evolution of the front tracking solution in space-time is shown in Fig. 8(a) up to t = 1. The flow solution consists of a left
running centered rarefaction wave discretized using ny = 8 characteristic fronts, a right running shock wave, and a contact
discontinuity which separates the left and right post-states. The resulting approximation for the piecewise linear and piece-
wise constant front tracking methods at t = 1 is considered in Fig. 8(b) for the density p to visualize also the contact discon-
tinuity. The other primary flow quantities give rise to the same observations. Both approaches resolve the shock wave and
contact discontinuity as a true discontinuity. The two results differ in the approximation of the continuous variation of the
flow conditions in the rarefaction wave. The piecewise linear solution leads to a continuous representation of the rarefaction
wave in contrast to the staircase behavior resulting from the piecewise constant method.

The piecewise linear solution is constructed by first decomposing the piecewise constant solution into the three wave

solutions V,;,(x) and reference value U, as shown in Fig. 8(c). The reference density is equal to its left most value of
0 rer = 1. The solution is decomposed by grouping the fronts f’"; with wave numbers Unymer,, Of the: (1) rarefaction wave;

(2) contact discontinuity; and (3) shock wave. The corresponding front types frypemj are used in the linearization procedure
J

where the discontinuous phenomena are unaffected. The density in the rarefaction wave is linearized by averaging the left
and right value at the location of an internal characteristic. At the leftmost and rightmost characteristic the left and right
state is adopted, respectively.

The error convergence for the velocity u, pressure p, and density p at t = 1 with respect to a fine reference solution in
Fig. 8(d) demonstrates that the piecewise linear reconstruction leads for this problem to a second order error convergence
rate as function of the number of characteristics n; discretizing the rarefaction wave. The employed L; error measure is de-
fined as
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Fig. 9. Sod’s Riemann problem in a closed shock tube for the piecewise linear (FT2) and piecewise constant (FT1) front tracking methods, and the second
order Godunov method (Godunov2) at t = 0.5.
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with z = {u,p, p}. The second order convergence results in an up to four orders of magnitude smaller error than the first or-
der piecewise constant front tracking method. For comparison also results for the second order Godunov method [29] based
on an algebraic average flux limiter are shown as function of the number of spatial volumes in the finite volume discretiza-
tion. For the Godunov method the infinite spatial domain is truncated to x € [-2,2] such that the wave phenomena do not
reach the boundaries for t < 1. The result that the actual Godunov convergence rate reduces for this discontinuous solution
as anticipated to first order verifies the validity of the reference solution. The resulting error is also an order of magnitude
larger than for the first order front tracking method. This reflects the efficient discretization of the space-time domain
achieved by the front tracking algorithm. More advanced second order finite volume discretizations are beyond the scope
of this work, since the comparison is here intended for verification only.

4.2. Closed shock tube

A more challenging problem for front tracking methods involving front interactions is obtained by limiting the spatial
domain of Sod’s Riemann problem to a closed shock tube. In this section the initial conditions (30) are considered on the
domain

xe[-02;2], (32)

with reflective boundaries at x = —0.2 and x = 2. At a front interaction with a boundary a piston problem is solved in an anal-
ogous way to how a Riemann problem is used to resolve an interaction of two fronts. The space-time front tracking solution
with ny = 16 fronts in the rarefaction wave discretization is shown in Fig. 9(a) up to t = 1.5. The left running rarefaction wave
reflects on the left boundary before it interacts with the contact discontinuity and the shock wave reflected from the right
boundary at x = 2. The solution is considered at the time levels t = {0.5;1; 1.5} denoted by the horizontal dotted lines.

At t = 0.5 the rarefaction wave is reflecting from the left boundary, which leads to an interaction of the incident and re-
flected wave. This results in relatively small density gradients in the interaction region close to the wall for x € [-0.2; —0.1] in
Fig. 9(b). The piecewise constant front tracking method gives in this region a tooth-shaped approximation due to the inter-
action of the two waves, see Fig. 10 for an enlarged view. The piecewise linear approach gives a continuous solution in both
the reflected rarefaction wave and the interaction region. This is achieved by the automatic introduction of a fourth wave
number for the reflected wave in the decomposition of Fig. 9(c). The incident and reflected rarefaction wave are then
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Fig. 11. Sod’s Riemann problem in a closed shock tube for the piecewise linear (FT2) and piecewise constant (FT1) front tracking methods, and the second
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linearized independently. The piecewise linear front tracking method maintains a second order convergence rate in the wave
interaction region as shown in Fig. 9(d).

The interaction of right running rarefaction wave number 4 with the contact discontinuity at t = 1 shown in Fig. 11(a)
results in the creation of a reflected left running fan of characteristics, which is an isentropic compression wave. The discret-
ization of this reflection leads to a new wave number 5 in the wave solution decomposition of Fig. 11(c). Wave number 1 is
no longer present in the decomposition, since the reflection of the initial left running rarefaction wave onto the left boundary
has been completed before t = 1. At t = 1.5 the right running rarefaction wave 4 is reflecting from the right boundary and
also interacting with the reflected shock wave. The continuous change of entropy at the right of the curved shock wave path
in the shock wave/rarefaction interaction region is discretized using a series of contact waves. These phenomena are resolved
by three additional wave numbers, see Fig. 11(b) and (d). Also for these increasingly complex wave interactions, piecewise
linear front tracking remains second order accurate in Fig. 11(e) and (f). It is observed that the error increases slightly with
time for a fixed number of fronts per rarefaction wave, which is an intrinsic property of the front tracking method [17] and
caused by the increasing detail in the solution.

5. Two interacting blast waves problem

A classical test problem for assessing the performance of numerical methods in the presents of strong discontinuities is
the two interacting blast waves problem introduced by Woodward [32]. The blast waves shock tube problem on the domain
x =[0,1] is defined by the initial condition consisting of three uniform regions for the pressure

1000, 0<x<0.1,
p=1¢001, 01<x<0.9, (33)
100, 09<x<1,

and constant velocity u = 0 and density p = 1 between reflecting walls at x = 0 and x = 1. The solution until ¢ = 0.04 in-
volves the interaction of the strong shock waves and contact discontinuities with the reflections of the rarefaction waves
created at the jumps in the initial condition. This results in a highly complex interaction in the collision region as illustrated
by the space-time front tracking solution for a discretization of the rarefaction waves with é = 0.1 in Fig. 12(a). The piece-
wise linear front tracking solution of the density p, velocity u, and pressure p at t = 0.038 for 6 = 0.05 of Fig. 12(b) to (d)
gives a smooth approximation of the continuous regions and a sharp resolution of the discontinuities. The detailed flow fea-
tures in the collision region clearly visible in the density profile around x = 0.8 affect the velocity and pressure to a lesser
extend. The predicted flow field shows excellent agreement with the benchmark results presented in [33].
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The time evolution of the density p between t =0 and t = 0.038 at times also considered in literature [33] is given in
Fig. 13. Initially for t < 0.026 the density shows that the two sets of strong waves emanating from the left and right discon-
tinuity in the initial conditions reflect on the boundaries and interact with each other separately resulting in a maximum
density of p = 6.0. After the intersection of the two shock waves the density peaks at p = 28.52 for t = 0.028 and decreases
with increasing time.

The error convergence for u, p, and p of piecewise linear front tracking is compared in Fig. 14 to that of piecewise constant
front tracking as function of §. The results show that the piecewise linear approximation achieves second order convergence
also in case of strong waves and their interactions for t < 0.026. In the collision region for t > 0.028 the method converges to
second order accuracy at lower values of § due to the high level of detail in solution. The piecewise linear front tracking
method consistently achieves higher convergence rates and significantly lower errors than the first order piecewise constant
front tracking method.

6. Two-dimensional supersonic airfoil flow

The meshless front tracking method is also an effective approach for simulating two-dimensional supersonic steady Euler
flows. In that case the free stream flow direction instead of the time axis is treated as the hyperbolic coordinate. This ap-
proach is applicable if the velocity component in the direction of the undisturbed flow streamlines is supersonic throughout
the whole flow field. This implies, for example, an airfoil flow with attached shock waves at the sharp leading and trailing
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